




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、MapReduce:Simplified Data Processing on Large ClustersThese are slides from Dan Welds class at U. Washington(who in turn made his slides based on those by Jeff Dean, Sanjay Ghemawat, Google, Inc.)Motivation Large-Scale Data ProcessingqWant to use 1000s of CPUs But dont want hassle of managing things
2、 MapReduce providesqAutomatic parallelization & distributionqFault toleranceqI/O schedulingqMonitoring & status updatesMap/Reduce Map/Reduce qProgramming model from Lisp q(and other functional languages) Many problems can be phrased this way Easy to distribute across nodes Nice retry/failure semanti
3、csMap in Lisp (Scheme) (map f list list2 list3 ) (map square (1 2 3 4)q(1 4 9 16) (reduce + (1 4 9 16)q(+ 16 (+ 9 (+ 4 1) ) )q30 (reduce + (map square (map l1 l2)Unary operatorBinary operatorMap/Reduce ala Google map(key, val) is run on each item in setqemits new-key / new-val pairs reduce(key, vals
4、) is run for each unique key emitted by map()qemits final outputcount words in docsqInput consists of (url, contents) pairsqmap(key=url, val=contents): For each word w in contents, emit (w, “1”)qreduce(key=word, values=uniq_counts): Sum all “1”s in values list Emit result “(word, sum)”Count, Illustr
5、atedmap(key=url, val=contents):For each word w in contents, emit (w, “1”)reduce(key=word, values=uniq_counts):Sum all “1”s in values listEmit result “(word, sum)”see bob throwsee spot runsee1bob1 run1see 1spot 1throw1bob1 run1see 2spot 1throw1GrepqInput consists of (url+offset, single line)qmap(key=
6、url+offset, val=line): If contents matches regexp, emit (line, “1”)qreduce(key=line, values=uniq_counts): Dont do anything; just emit lineReverse Web-Link Graph MapqFor each URL linking to target, qOutput pairs ReduceqConcatenate list of all source URLsqOutputs: pairsInverted Index Map ReduceExample
7、 uses: distributed grepdistributed sort web link-graph reversal term-vector / hostweb access log stats inverted index construction document clustering machine learning statistical machine translation . . .Model is Widely ApplicableMapReduce Programs In Google Source Tree Typical cluster: 100s/1000s
8、of 2-CPU x86 machines, 2-4 GB of memory Limited bisection bandwidth Storage is on local IDE disks GFS: distributed file system manages data (SOSP03) Job scheduling system: jobs made up of tasks, scheduler assigns tasks to machines Implementation is a C+ library linked into user programs Implementati
9、on OverviewExecutionHow is this distributed?1.Partition input key/value pairs into chunks, run map() tasks in parallel2.After all map()s are complete, consolidate all emitted values for each unique emitted key3.Now partition space of output map keys, and run reduce() in parallelIf map() or reduce()
10、fails, reexecute!Job ProcessingJobTrackerTaskTracker 0TaskTracker 1TaskTracker 2TaskTracker 3TaskTracker 4TaskTracker 51. Client submits “grep” job, indicating code and input files2. JobTracker breaks input file into k chunks, (in this case 6). Assigns work to ttrackers.3. After map(), tasktrackers
11、exchange map-output to build reduce() keyspace4. JobTracker breaks reduce() keyspace into m chunks (in this case 6). Assigns work.5. reduce() output may go to NDFS“grep”Execution Parallel Execution Task Granularity & Pipelining Fine granularity tasks: map tasks machinesqMinimizes time for fault reco
12、veryqCan pipeline shuffling with map executionqBetter dynamic load balancing Often use 200,000 map & 5000 reduce tasks Running on 2000 machines Handled via re-executionqDetect failure via periodic heartbeatsqRe-execute completed + in-progress map tasksWhy?qRe-execute in progress reduce tasksqTask co
13、mpletion committed through master Robust: lost 1600/1800 machines once finished okSemantics in presence of failures: see paperFault Tolerance / WorkersMaster Failure Could handle, ? But dont yet q(master failure unlikely)Slow workers significantly delay completion time qOther jobs consuming resource
14、s on machine qBad disks w/ soft errors transfer data slowly qWeird things: processor caches disabled (!) Solution: Near end of phase, spawn backup tasks qWhichever one finishes first wins Dramatically shortens job completion time Refinement: Redundant ExecutionRefinement: Locality Optimization Maste
15、r scheduling policy: qAsks GFS for locations of replicas of input file blocks qMap tasks typically split into 64MB (GFS block size) qMap tasks scheduled so GFS input block replica are on same machine or same rack EffectqThousands of machines read input at local disk speed Without this, rack switches
16、 limit read rateRefinementSkipping Bad Records Map/Reduce functions sometimes fail for particular inputs qBest solution is to debug & fix Not always possible third-party source libraries qOn segmentation fault: Send UDP packet to master from signal handler Include sequence number of record being pro
17、cessed qIf master sees two failures for same record: Next worker is told to skip the record Sorting guarantees qwithin each reduce partition Compression of intermediate data CombinerqUseful for saving network bandwidth Local execution for debugging/testing User-defined countersOther RefinementsTests
18、 run on cluster of 1800 machines: q4 GB of memory qDual-processor 2 GHz Xeons with Hyperthreading qDual 160 GB IDE disks qGigabit Ethernet per machine qBisection bandwidth approximately 100 Gbps Two benchmarks:MR_GrepScan1010 100-byte records to extract records matching a rare pattern (92K matching
19、records) MR_SortSort 1010 100-byte records (modeled after TeraSort benchmark)PerformanceMR_GrepLocality optimization helps: 1800 machines read 1 TB at peak 31 GB/s W/out this, rack switches would limit to 10 GB/s Startup overhead is significant for short jobs Normal No backup tasks 200 processes kil
20、ledMR_Sort Backup tasks reduce job completion time a lot! System deals well with failures Rewrote Googles production indexingSystem using MapReduce qSet of 10,14,17,21,24 MapReduce operations qNew code is simpler, easier to understand 3800 lines C+ 700qMapReduce handles failures, slow machines qEasy
21、 to make indexing faster add more machinesExperienceNumber of jobs 29,423 Average job completion time634 secs Machine days used 79,186 days Input data read 3,288 TB Intermediate data produced 758 TB Output data written 193 TB Average worker machines per job 157Average worker deaths per job 1.2Average map tasks per job 3,351 Average reduce tasks per job 55 Unique map implementations 395 Uni
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年甘肅張掖市民樂縣前進(jìn)牧業(yè)(德瑞牧場)招聘考試筆試試題(含答案)
- 2025年安徽蚌埠市東方投資集團(tuán)有限公司下屬子公司招聘考試筆試試題(含答案)
- 【來賓】2025年廣西來賓市商務(wù)局招聘筆試歷年典型考題及考點(diǎn)剖析附帶答案詳解
- 制作小弓箭教學(xué)課件
- 整車性能檢測(cè)技術(shù)課件
- 整式除法說課課件
- 農(nóng)作物秸稈綜合利用情況調(diào)研報(bào)告
- 敬畏生命小學(xué)班會(huì)課件
- 敬業(yè)與樂業(yè)小學(xué)生課件
- 意外險(xiǎn)理賠調(diào)查實(shí)務(wù)及典型案例分析
- GB/T 16451-2008天然脂肪醇
- GB 5013.2-1997額定電壓450/750V及以下橡皮絕緣電纜第2部分:試驗(yàn)方法
- 山東省中小學(xué)校檔案管理暫行辦法
- 普通高中物理課程標(biāo)準(zhǔn)
- 國家開放大學(xué)《監(jiān)督學(xué)》形考任務(wù)( 1-4)試題和答案解析
- 完工付款最終付款申請(qǐng)表
- 人工動(dòng)靜脈內(nèi)瘺
- 新版(七步法案例)PFMEA
- 慢阻肺隨訪記錄表正式版
- 廣西大學(xué)數(shù)學(xué)建模競賽選拔賽題目
- 受戒申請(qǐng)表(共3頁)
評(píng)論
0/150
提交評(píng)論