定積分的概念教案_第1頁(yè)
定積分的概念教案_第2頁(yè)
定積分的概念教案_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上1.5.3定積分的概念教學(xué)目標(biāo) 能用定積分的定義求簡(jiǎn)單的定積分;理解掌握定積分的幾何意義;重點(diǎn) 定積分的概念、定積分法求簡(jiǎn)單的定積分、定積分的幾何意義難點(diǎn)定積分的概念、定積分的幾何意義復(fù)習(xí): 1 回憶前面曲邊圖形面積,變速運(yùn)動(dòng)的路程,變力做功等問(wèn)題的解決方法,解決步驟 2對(duì)這四個(gè)步驟再以分析、理解、歸納,找出共同點(diǎn)新課講授1定積分的概念 一般地,設(shè)函數(shù)在區(qū)間上連續(xù),用分點(diǎn)將區(qū)間等分成個(gè)小區(qū)間,每個(gè)小區(qū)間長(zhǎng)度為(),在每個(gè)小區(qū)間上取一點(diǎn),作和式:如果無(wú)限接近于(亦即)時(shí),上述和式無(wú)限趨近于常數(shù),那么稱該常數(shù)為函數(shù)在區(qū)間上的定積分。記為: 其中成為被積函數(shù),叫做積分變量,

2、為積分區(qū)間,積分上限,積分下限。說(shuō)明:(1)定積分是一個(gè)常數(shù),即無(wú)限趨近的常數(shù)(時(shí))稱為,而不是 (2)用定義求定積分的一般方法是:分割:等分區(qū)間;近似代替:取點(diǎn);求和:; 取極限:(3)曲邊圖形面積:;變速運(yùn)動(dòng)路程;變力做功 2定積分的幾何意義 如果在區(qū)間上函數(shù)連 續(xù)且恒有,那么定積分表示由直線(),和曲線所圍成的曲邊梯形的面積。例1計(jì)算定積分分析:所求定積分即為如圖陰影部分面積,面積為。12yxo即:思考:若改為計(jì)算定積分呢?改變了積分上、下限,被積函數(shù)在上出現(xiàn)了負(fù)值如何解決呢?(后面解決的問(wèn)題) 練習(xí) 計(jì)算下列定積分1 解:2 解:例2計(jì)算由兩條拋物線和所圍成的圖形的面積.【分析】?jī)蓷l拋物線所圍成的圖形的面積,可以由以兩條曲線所對(duì)應(yīng)的曲邊梯形的面積的差得到。解:,所以兩曲線的交點(diǎn)為(0,0)、(1,1),面積S=,所以=在直角坐標(biāo)系下平面圖形的面積的四個(gè)步驟:1.作圖象;2.求交點(diǎn);3.用定積分表示所求的面積;4.微積分基本定理求定積分。鞏固練習(xí) 計(jì)算由曲線和所圍成的圖形的面積.課堂小結(jié):定積分的概念、定義法求簡(jiǎn)單的定積分、定積分的幾何意義課后反思:定積分的幾何意義的片面理解。對(duì)于

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論