




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、英格教育文化有限公司 全新課標(biāo)理念,優(yōu)質(zhì)課程資源 28.1 銳角三角函數(shù)(1)一、教學(xué)目標(biāo)1、通過探究使學(xué)生知道當(dāng)直角三角形的銳角固定時,它的對邊與斜邊的比值都固定(即正弦值不變)這一事實(shí)。 2、能根據(jù)正弦概念正確進(jìn)行計(jì)算3、經(jīng)歷當(dāng)直角三角形的銳角固定時,它的對邊與斜邊的比值是固定值這一事實(shí),發(fā)展學(xué)生的形象思維,培養(yǎng)學(xué)生由特殊到一般的演繹推理能力。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):理解認(rèn)識正弦(sinA)概念,通過探究使學(xué)生知道當(dāng)銳角固定時,它的對邊與斜邊的比值是固定值這一事實(shí)難點(diǎn):引導(dǎo)學(xué)生比較、分析并得出:對任意銳角,它的對邊與斜邊的比值是固定值的事實(shí)。三、教學(xué)過程(一)復(fù)習(xí)引入操場里有一個旗桿,老師
2、讓小明去測量旗桿高度。(演示學(xué)校操場上的國旗圖片) 小明站在離旗桿底部10米遠(yuǎn)處,目測旗桿的頂部,視線與水平線的夾角為34度,并已知目高為1米然后他很快就算出旗桿的高度了。1米10米? 你想知道小明怎樣算出的嗎?師:通過前面的學(xué)習(xí)我們知道,利用相似三角形的方法可以測算出旗桿的大致高度;實(shí)際上我們還可以象小明那樣通過測量一些角的度數(shù)和一些線段的長度,來測算出旗桿的高度。這就是我們本章即將探討和學(xué)習(xí)的利用銳角三角函數(shù)來測算物體長度或高度的方法。 下面我們大家一起來學(xué)習(xí)銳角三角函數(shù)中的第一種:銳角的正弦(二)實(shí)踐探索為了綠化荒山,某地打算從位于山腳下的機(jī)井房沿著山坡鋪設(shè)水管,在山坡上修建一座揚(yáng)水站,
3、對坡面的綠地進(jìn)行灌溉?,F(xiàn)測得斜坡與水平面所成角的度數(shù)是30o,為使出水口的高度為35m,那么需要準(zhǔn)備多長的水管?分析: 問題轉(zhuǎn)化為,在RtABC中,C=90o,A=30o,BC=35m,求AB 根據(jù)“再直角三角形中,30o角所對的邊等于斜邊的一半”,即可得AB=2BC=70m.即需要準(zhǔn)備70m長的水管結(jié)論:在一個直角三角形中,如果一個銳角等于30o,那么不管三角形的大小如何,這個角的對邊與斜邊的比值都等于如圖,任意畫一個RtABC,使C=90o,A=45o,計(jì)算A的對邊與斜邊的比,能得到什么結(jié)論?分析:在RtABC 中,C=90o,由于A=45o,所以RtABC是等腰直角三角形,由
4、勾股定理得 ,故 結(jié)論:在一個直角三角形中,如果一個銳角等于45o,那么不管三角形的大小如何,這個角的對邊與斜邊的比值都等于一般地,當(dāng)A取其他一定度數(shù)的銳角時,它的對邊與斜邊的比是否也是一個固定值?如圖:RtABC與RtABC,C=C =90o,A=A=,那么與有什么關(guān)系分析:由于C=C =90o,A=A=,所以RtABCRtABC,即 結(jié)論:在直角三角形中,當(dāng)銳角A的度數(shù)一定時,不管三角形的大小如何,A的對邊與斜邊的比也是一個固定值。認(rèn)識正弦如圖,在RtABC中,A、B、C所對的邊分別記為a、b、c。師:在RtABC中,C=90°,我們把銳角A的對邊與斜邊的比叫做A的正弦。記作si
5、nA。板書:sinA (舉例說明:若a=1,c=3,則sinA=)注意:1、sinA不是 sin與A的乘積,而是一個整體;2、正弦的三種表示方式:sinA、sin56°、sinDEF3、sinA 是線段之間的一個比值;sinA 沒有單位。提問:B的正弦怎么表示?要求一個銳角的正弦值,我們需要知道直角三角形中的哪些邊?(三)教學(xué)互動例1如圖,在中, ,求sin和sin的值.解答按課本(四)鞏固再現(xiàn)1三角形在正方形網(wǎng)格紙中的位置如圖所示,則sin的值是 A B C D2如圖,在直角ABC中,C90o,若AB5,AC4,則sinA( )A B C D3在ABC中,C=90°,BC
6、=2,sinA=,則邊AC的長是( )A B3 C D 四、布置作業(yè)28.1 銳角三角函數(shù)(2)一、教學(xué)目標(biāo)1、使學(xué)生知道當(dāng)直角三角形的銳角固定時,它的鄰邊與斜邊、對邊與鄰邊的比值也都固定這一事實(shí)2、逐步培養(yǎng)學(xué)生觀察、比較、分析、概括的思維能力二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):理解余弦、正切的概念難點(diǎn):熟練運(yùn)用銳角三角函數(shù)的概念進(jìn)行有關(guān)計(jì)算EOABCD·三、教學(xué)過程(一)復(fù)習(xí)引入1、口述正弦的定義2、(1)如圖,已知AB是O的直徑,點(diǎn)C、D在O上,且AB5,BC3則sinBAC= ;sinADC= (2)如圖,在RtABC中,ACB90°,CDAB于點(diǎn)D。已知AC=,BC=2,那么s
7、inACD( )ABCD(二)實(shí)踐探索一般地,當(dāng)A取其他一定度數(shù)的銳角時,它的鄰邊與斜邊的比是否也是一個固定值?如圖:RtABC與RtABC,C=C =90o,B=B=,那么與有什么關(guān)系?分析:由于C=C =90o,B=B=,所以RtABCRtABC,即 結(jié)論:在直角三角形中,當(dāng)銳角B的度數(shù)一定時,不管三角形的大小如何,B的鄰邊與斜邊的比也是一個固定值。如圖,在RtABC中,C=90o,把銳角B的鄰邊與斜邊的比叫做B的余弦,記作cosB即把A的對邊與鄰邊的比叫做A的正切.記作tanA,即銳角A的正弦,余弦,正切都叫做A的銳角三角函數(shù).(三)教學(xué)互動例2:如圖,在中, ,BC=6, 求cos和t
8、an的值.解: ,.又例3:(1)如圖(1), 在中,,求的度數(shù).(2)如圖(2),已知圓錐的高AO等于圓錐的底面半徑OB的倍,求.(四)鞏固再現(xiàn)1.在中,C90°,a,b,c分別是A、B、C的對邊,則有() ABCD 本題主要考查銳解三角函數(shù)的定義,同學(xué)們只要依據(jù)的圖形,不難寫出,從而可判斷C正確.2. 在中,C90°,如果那么的值為() ABCD分析? 本題主要考查銳解三角函數(shù)及三角變換知識。其思路是:依據(jù)條件,可求出;再由,可求出,從而,故應(yīng)選D.3、如圖:P是的邊OA上一點(diǎn),且P點(diǎn)的坐標(biāo)為(3,4), 則cos_. 4、P78 練習(xí)1、2、3四、布置作業(yè)P82. 1
9、28.1 銳角三角函數(shù)(3)一、教學(xué)目標(biāo)1、使學(xué)生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系2、使學(xué)生了解同一個銳角正弦與余弦之間的關(guān)系3、使學(xué)生了解正切與正弦、余弦的關(guān)系4、使學(xué)生了解三角函數(shù)值隨銳角的變化而變化的情況二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):三個銳角三角函數(shù)間幾個簡單關(guān)系難點(diǎn):能獨(dú)立根據(jù)三角函數(shù)的定義推導(dǎo)出三個銳角三角函數(shù)間幾個簡單關(guān)系三、教學(xué)過程(一)復(fù)習(xí)引入叫學(xué)生結(jié)合直角三角形說出正弦、余弦、正切的定義(二)實(shí)踐探索1、從定義可以看出與有什么關(guān)系?與呢?滿足這種關(guān)系的與又是什么關(guān)系呢?2、利用定義及勾股定理你還能發(fā)現(xiàn)與的關(guān)系嗎?3、再試試看與和存在特殊關(guān)系嗎?經(jīng)過教
10、師引導(dǎo)學(xué)生探索之后總結(jié)出如下幾種關(guān)系:(1)若 那么=或=(2)(3)4、在正弦中它的值隨銳角的增大而增大還是隨銳角的增大而減少?為什么?余弦呢?正切呢?通過一番討論后得出:(1)銳角的正弦值隨角度的增加(或減小)而增加(或減小);(2)銳角的余弦值隨角度的增加(或減小)而減小(或增加);(3)銳角的正切值隨角度的增加(或減小)而增加(或減小)。(三)教學(xué)互動 (1)判斷題:i 對于任意銳角,都有0sin1和0cos1 ( )ii 對于任意
11、銳角1,2,如果12,那么cos1cos2 ( )iii 如果sin1sin2,那么銳角1銳角2I
12、; ( )iv 如果cos1cos2,那么銳角1銳角2
13、160; ( )(2)在RtABC中,下列式子中不一定成立的是_AsinAsinB BcosAsinB CsinAcosB Dsin(A+B)sinC(3)在A0°A30° B30°A45°C45A60° D60°A90°四、布置作業(yè)課題 30°、45°、60°角的三角函數(shù)值一、教學(xué)目標(biāo)1、能推導(dǎo)并熟記30°、45°、60°角的三角函數(shù)值,并能根據(jù)這些值說出對應(yīng)的銳角度數(shù)。2、能熟練計(jì)算含有30°、45
14、76;、60°角的三角函數(shù)的運(yùn)算式二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):熟記30°、45°、60°角的三角函數(shù)值,能熟練計(jì)算含有30°、45°、60°角的三角函數(shù)的運(yùn)算式難點(diǎn):30°、45°、60°角的三角函數(shù)值的推導(dǎo)過程三、教學(xué)過程(一)復(fù)習(xí)引入還記得我們推導(dǎo)正弦關(guān)系的時候所到結(jié)論嗎?即,你還能推導(dǎo)出的值及30°、45°、60°角的其他三角函數(shù)值嗎?(二)實(shí)踐探索1.讓學(xué)生畫30°45°60°的直角三角形,分別求sin 30° cos45
15、° tan60°歸納結(jié)果30°45°60°sinAcosAtanA(三)教學(xué)互動例 求下列各式的值:(1)cos+cos+sinsin(2) 解 (1)原式= (2)原式=說明:本題主要考查特殊角的正弦余弦值,解題關(guān)鍵是熟悉并牢記特殊角的正弦余弦值。易錯點(diǎn)因沒有記準(zhǔn)特殊角的正弦余弦值,造成計(jì)算錯例3:(1)如圖(1), 在中,,求的度數(shù).(2)如圖(2),已知圓錐的高AO等于圓錐的底面半徑OB的倍,求.解: (1)在圖(1)中, (2)在圖(2)中.(四)鞏固再現(xiàn)1、P79 例32、P80 練習(xí)1、23、隨機(jī)抽查學(xué)生對7
16、9頁的表的記憶情況四、布置作業(yè)P85習(xí)題28.1. 3課題 用計(jì)算器求銳角三角函數(shù)值和根據(jù)三角函數(shù)值求銳角一、教學(xué)目標(biāo)1、讓學(xué)生熟識計(jì)算器一些功能鍵的使用2、會熟練運(yùn)用計(jì)算器求銳角的三角函數(shù)值和由三角函數(shù)值來求角二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):運(yùn)用計(jì)算器處理三角函數(shù)中的值或角的問題難點(diǎn):知道值求角的處理三、教學(xué)過程(一)復(fù)習(xí)引入 通過上課的學(xué)習(xí)我們知道,當(dāng)銳角A是等特殊角時,可以求得這些角的正弦、余弦、正切值;如果銳角A不是這些特殊角,怎樣得到它的三角函數(shù)值呢?我們可以用計(jì)算器來求銳角的三角函數(shù)值。(二)實(shí)踐探索1、用計(jì)算器求銳角的正弦、余弦、正切值利用求下列三角函數(shù)值(這個教師可完全放手學(xué)生去完成,
17、教師只需巡回指導(dǎo))sin37°24 sin37°23 cos21°28 cos38°12tan52°; tan36°20; tan75°17;2.熟練掌握用科學(xué)計(jì)算器由已知三角函數(shù)值求出相應(yīng)的銳角.例如:sinA=0.9816.A .cosA0.8607,A ;tanA0.1890,A= ;tanA56.78,A .3、強(qiáng)化完成P81頁的練習(xí)1、2四、布置作業(yè)P82習(xí)題28.1. 4、528.2 解直角三角形(1) 一、教育目標(biāo) 1、使學(xué)生理解直角三角形中五個元素的關(guān)系,會運(yùn)用勾股定理,直角三角形的兩個銳
18、角互余及銳角三角函數(shù)解直角三角形 2、通過綜合運(yùn)用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形,逐步培養(yǎng)學(xué)生分析問題、解決問題的能力 3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣 二、教學(xué)重點(diǎn)、難點(diǎn) 1重點(diǎn):直角三角形的解法 2難點(diǎn):三角函數(shù)在解直角三角形中的靈活運(yùn)用 三、教學(xué)步驟 (一)復(fù)習(xí)引入 1在三角形中共有幾個元素? 2直角三角形ABC中,C=90°,a、b、c、A、B這五個元素間有哪些等量關(guān)系呢?(1)邊角之間關(guān)系如果用表示直角三角形的一個銳角,那上述式子就可以
19、寫成.(2)三邊之間關(guān)系 a2 +b2 =c2 (勾股定理) (3)銳角之間關(guān)系A(chǔ)+B=90° 以上三點(diǎn)正是解直角三角形的依據(jù),通過復(fù)習(xí),使學(xué)生便于應(yīng)用(二)教學(xué)過程 1我們已掌握RtABC的邊角關(guān)系、三邊關(guān)系、角角關(guān)系,利用這些關(guān)系,在知道其中的兩個元素(至少有一個是邊)后,就可求出其余的元素這樣的導(dǎo)語既可以使學(xué)生大概了解解直角三角形的概念,同時又陷入思考,為什么兩個已知元素中必有一條邊呢?激發(fā)了學(xué)生的學(xué)習(xí)熱情 2教師在學(xué)生思考后,繼續(xù)引導(dǎo)“為什么兩個已知元素中至少有一條邊?”讓全體學(xué)生的思維目標(biāo)一致,在作出準(zhǔn)確回答后,教師請學(xué)生
20、概括什么是解直角三角形?(由直角三角形中除直角外的兩個已知元素,求出所有未知元素的過程,叫做解直角三角形) 3例題 例 1在ABC中,C為直角,A、B、C所對的邊分別為a、b、c,且b=,a=,解這個三角形 解直角三角形的方法很多,靈活多樣,學(xué)生完全可以自己解決,但例題具有示范作用因此,此題在處理時,首先,應(yīng)讓學(xué)生獨(dú)立完成,培養(yǎng)其分析問題、解決問題能力,同時滲透數(shù)形結(jié)合的思想其次,教師組織學(xué)生比較各種方法中哪些較好,選一種板演 解 tanA=, . .C=2b=.例 2在RtABC中, B =35,b=20,解這個三角形 引
21、導(dǎo)學(xué)生思考分析完成后,讓學(xué)生獨(dú)立完成 在學(xué)生獨(dú)立完成之后,選出最好方法,教師板書. , . 完成之后引導(dǎo)學(xué)生小結(jié)“已知一邊一角,如何解直角三角形?” 答:先求另外一角,然后選取恰當(dāng)?shù)暮瘮?shù)關(guān)系式求另兩邊計(jì)算時,利用所求的量如不比原始數(shù)據(jù)簡便的話,最好用題中原始數(shù)據(jù)計(jì)算,這樣誤差小些,也比較可靠,防止第一步錯導(dǎo)致一錯到底注意:例1中的b和例2中的c都可以利用勾股定理或其他三角函數(shù)來計(jì)算,但計(jì)算出的值可能有些少差異,這都是正常的。 4鞏固練習(xí) P91說明:解直角三角形計(jì)算上比較繁鎖,條件好的學(xué)校允許用計(jì)算器但無論是否使用計(jì)算器,都必須寫出解直角三角
22、形的整個過程要求學(xué)生認(rèn)真對待這些題目,不要馬馬虎虎,努力防止出錯,培養(yǎng)其良好的學(xué)習(xí)習(xí)慣 (四)總結(jié)與擴(kuò)展1請學(xué)生小結(jié):在直角三角形中,除直角外還有五個元素,知道兩個元素(至少有一個是邊),就可以求出另三個元素2出示圖表,請學(xué)生完成 abcAB123b=acotA4b=atanB56a=btanA7a=bcotB8a=csinAb=ccosA9a=ccosBb=csinB10不可求不可求不可求注:上表中“”表示已知。 四、布置作業(yè)28.2解直角三角形(1)一、教學(xué)目標(biāo)1、使學(xué)生會把實(shí)際問題轉(zhuǎn)化為解直角三角形問題,從而會把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題來解決2、逐步培養(yǎng)學(xué)生
23、分析問題、解決問題的能力3、滲透數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的觀點(diǎn),培養(yǎng)學(xué)生用數(shù)學(xué)的意識二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):要求學(xué)生善于將某些實(shí)際問題中的數(shù)量關(guān)系,歸結(jié)為直角三角形元素之間的關(guān)系,從而利用所學(xué)知識把實(shí)際問題解決難點(diǎn):實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型三、教學(xué)過程(一)復(fù)習(xí)引入1直角三角形中除直角外五個元素之間具有什么關(guān)系?請學(xué)生口答2、在中RtABC中已知a=12 ,c=13 求角B應(yīng)該用哪個關(guān)系?請計(jì)算出來。(二)實(shí)踐探索要想使人安全地攀上斜靠在墻面上的梯子的頂端.梯子與地面所成的角一般要滿足, (如圖).現(xiàn)有一個長6m的梯子,問:(1)使用這個梯子最高可以安全攀上多高的墻(精確到0. 1 m)
24、 (2)當(dāng)梯子底端距離墻面2.4 m時,梯子與地面所成的角等于多少(精確到1o) 這時人是否能夠安全使用這個梯子 引導(dǎo)學(xué)生先把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型然后分析提出的問題是數(shù)學(xué)模型中的什么量在這個數(shù)學(xué)模型中可用學(xué)到的什么知識來求未知量? 幾分鐘后,讓一個完成較好的同學(xué)示范。(三)教學(xué)互動例3 2003年10月15日“神舟”5號載人航天飛船發(fā)射成功.當(dāng)飛船完成變軌后,就在離地球表面350km的圓形軌道上運(yùn)行.如圖,當(dāng)飛船運(yùn)行到地球表面上P點(diǎn)的正上方時,從飛船上最遠(yuǎn)能直接看到的地球上的點(diǎn)在什么位置?這樣的最遠(yuǎn)點(diǎn)與P點(diǎn)的距離是多少?(地球半徑約為6 400 km,結(jié)果精確
25、到0. 1 km)分析:從飛船上能最遠(yuǎn)直接看到的地球上的點(diǎn),應(yīng)是視線與地球相切時的切點(diǎn).如圖,O表示地球,點(diǎn)F是飛船的位置,F(xiàn)Q是O的切線,切點(diǎn)Q是從飛船觀測地球時的最遠(yuǎn)點(diǎn). 弧PQ的長就是地面上P, Q兩點(diǎn)間的距離.為計(jì)算弧PQ的長需先求出(即)解:在上圖中,F(xiàn)Q是O的切線,是直角三角形, 弧PQ的長為 由此可知,當(dāng)飛船在p點(diǎn)正上方時,從飛船觀測地球時的最遠(yuǎn)點(diǎn)距離P點(diǎn)約2 009.6 km. (四)鞏固再現(xiàn)P89練習(xí) 1,P92習(xí)題28.2. 1四、布置作業(yè)P92 2,328.2解直角三角形(2)一、教學(xué)目標(biāo)1、使學(xué)生了解什么是仰角和俯角2、逐步培養(yǎng)學(xué)生分析問題、解決問題的能力;滲透數(shù)形結(jié)合
26、的數(shù)學(xué)思想和方法3、鞏固用三角函數(shù)有關(guān)知識解決問題,學(xué)會解決觀測問題二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):用三角函數(shù)有關(guān)知識解決觀測問題難點(diǎn):學(xué)會準(zhǔn)確分析問題并將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型三、教學(xué)過程(一)復(fù)習(xí)引入 平時我們觀察物體時,我們的視線相對于水平線來說可有幾種情況?(三種,重疊、向上和向下)結(jié)合示意圖給出仰角和俯角的概念(二)教學(xué)互動例4熱氣球的探測器顯示,從熱氣球看一棟高樓頂部的仰角為30o,看這棟離樓底部的俯角為60o,熱氣球與高樓的水平距離為120 m.這棟高樓有多高(結(jié)果精確到0.1m)?分析:在中,.所以可以利用解直角三角形的知識求出BD;類似地可以求出CD,進(jìn)而求出BC.解:如圖, ,,答
27、:這棟樓高約為277.1m.(三)鞏固再現(xiàn)1、為測量松樹AB的高度,一個人站在距松樹15米的E處,測得仰角ACD=52°,已知人的高度是1.72米,求樹高(精確到0.01米)2、在寬為30米的街道東西兩旁各有一樓房,從東樓底望西樓頂仰角為45°,從西樓頂望東樓頂,俯角為10°,求西樓高(精確到0.1米)3、上午10時,我軍駐某海島上的觀察所A發(fā)現(xiàn)海上有一艘敵軍艦艇正從C處向海島駛來,當(dāng)時的俯角,經(jīng)過5分鐘后,艦艇到達(dá)D處,測得俯角。已知觀察所A距水面高度為80米,我軍武器射程為100米,現(xiàn)在必須迅速計(jì)算出艦艇何時駛?cè)胛臆娀鹆ι涑讨畠?nèi),以便及時還擊。解:在直角三角形
28、ABC和直角三角形ABD中,我們可以分別求出: (米)(米)(米)艦艇的速度為(米/分)。設(shè)我軍火力射程為米,現(xiàn)在需算出艦艇從D到E的時間(分鐘) 我軍在12.5分鐘之后開始還擊,也就是10時17分30秒。4、小結(jié):談?wù)劚竟?jié)課你的收獲是什么?四、布置作業(yè)P93. 728.2解直角三角形(3)一、教學(xué)目標(biāo)1、使學(xué)生了解方位角的命名特點(diǎn),能準(zhǔn)確把握所指的方位角是指哪一個角2、逐步培養(yǎng)學(xué)生分析問題、解決問題的能力;滲透數(shù)形結(jié)合的數(shù)學(xué)思想和方法3、鞏固用三角函數(shù)有關(guān)知識解決問題,學(xué)會解決方位角問題二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):用三角函數(shù)有關(guān)知識解決方位角問題難點(diǎn):學(xué)會準(zhǔn)確分析問題并將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型三
29、、教學(xué)過程(一)復(fù)習(xí)引入1、叫同學(xué)們在練習(xí)薄上畫出方向圖(表示東南西北四個方向的)。2、依次畫出表示東南方向、西北方向、北偏東65度、南偏東34度方向的射線(二)教學(xué)互動例5如圖,一艘海輪位于燈塔P的北偏東65方向,距離燈塔80海里的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東34方向上的B處.這時,解:如圖, 在中, 在中, .,因此.當(dāng)海輪到達(dá)位于燈塔P的南偏東340方向時,它距離燈塔P大約130.23海里.海輪所在的B處距離燈塔P有多遠(yuǎn)(精確到0.01海里)?(三)鞏固再現(xiàn)1、P91. 12、上午10點(diǎn)整,一漁輪在小島O的北偏東30°方向,距離等于10海里的A處,正
30、以每小時10海里的速度向南偏東60°方向航行那么漁輪到達(dá)小島O的正東方向是什么時間?(精確到1分) 3、如圖6-32,海島A的周圍8海里內(nèi)有暗礁,魚船跟蹤魚群由西向東航行,在點(diǎn)B處測得海島A位于北偏東60°,航行12海里到達(dá)點(diǎn)C處,又測得海島A位于北偏東30°,如果魚船不改變航向繼續(xù)向東航行有沒有觸礁的危險(xiǎn)?四、布置作業(yè)P93. 928.2解直角三角形(4)一、教學(xué)目標(biāo)1、鞏固用三角函數(shù)有關(guān)知識解決問題,學(xué)會解決坡度問題2、逐步培養(yǎng)學(xué)生分析問題、解決問題的能力;滲透數(shù)形結(jié)合的數(shù)學(xué)思想和方法3、培養(yǎng)學(xué)生用數(shù)學(xué)的意識,滲透理論聯(lián)系實(shí)際的觀點(diǎn)二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):解決
31、有關(guān)坡度的實(shí)際問題難點(diǎn):理解坡度的有關(guān)術(shù)語三、教學(xué)過程(一)復(fù)習(xí)引入1講評作業(yè):將作業(yè)中學(xué)生普遍出現(xiàn)問題之處作一講評2創(chuàng)設(shè)情境,導(dǎo)入新課例 同學(xué)們,如果你是修建三峽大壩的工程師,現(xiàn)在有這樣一個問題請你解決:如圖6-33 水庫大壩的橫斷面是梯形,壩頂寬6m,壩高23m,斜坡AB的坡度i=13,斜坡CD的坡度i=12.5,求斜坡AB的坡面角,壩底寬AD和斜坡AB的長(精確到0.1m) 同學(xué)們因?yàn)槟惴Q他們?yōu)楣こ處煻湴?,滿腔熱情,但一見問題又手足失措,因?yàn)檫B題中的術(shù)語坡度、坡角等他們都不清楚這時,教師應(yīng)根據(jù)學(xué)生想學(xué)的心情,及時點(diǎn)撥(二)教學(xué)互動通過前面例題的教學(xué),學(xué)生已基本了解
32、解實(shí)際應(yīng)用題的方法,會將實(shí)際問題抽象為幾何問題加以解決但此題中提到的坡度與坡角的概念對學(xué)生來說比較生疏,同時這兩個概念在實(shí)際生產(chǎn)、生活中又有十分重要的應(yīng)用,因此本節(jié)課關(guān)鍵是使學(xué)生理解坡度與坡角的意義1 坡度與坡角 結(jié)合圖6-34,教師講述坡度概念,并板書:坡面的鉛直高度h和水平寬度的比叫做坡度(或叫做坡比),一般用i表示。即,常寫成i=1:m的形式如i=1:2.5把坡面與水平面的夾角叫做坡角 引導(dǎo)學(xué)生結(jié)合圖形思考,坡度i與坡角之間具有什么關(guān)系? 答:itan 這一關(guān)系在實(shí)際問題中經(jīng)常用到,教師不妨設(shè)置練習(xí),加以鞏固 練習(xí)(1)一段坡面的坡角為60
33、76;,則坡度i=_; _,坡角_度 為了加深對坡度與坡角的理解,培養(yǎng)學(xué)生空間想象力,教師還可以提問: (1)坡面鉛直高度一定,其坡角、坡度和坡面水平寬度有什么關(guān)系?舉例說明 (2)坡面水平寬度一定,鉛直高度與坡度有何關(guān)系,舉例說明 答:(1) 如圖,鉛直高度AB一定,水平寬度BC增加,將變小,坡度減小,因?yàn)?tan,AB不變,tan隨BC增大而減?。?)與(1)相反,水平寬度BC不變,將隨鉛直高度增大而增大,tan 也隨之增大,因?yàn)閠an=不變時,tan隨AB的增大而增大2講授新課 引導(dǎo)學(xué)生回頭分析引題,圖中
34、ABCD是梯形,若BEAD,CFAD,梯形就被分割成RtABE,矩形BEFC和RtCFD,AD=AE+EF+FD,AE、DF可在ABE和CDF中通過坡度求出,EF=BC=6m,從而求出AD 以上分析最好在學(xué)生充分思考后由學(xué)生完成,以培養(yǎng)學(xué)生邏輯思維能力及良好的學(xué)習(xí)習(xí)慣 坡度問題計(jì)算過程很繁瑣,因此教師一定要做好示范,并嚴(yán)格要求學(xué)生,選擇最簡練、準(zhǔn)確的方法計(jì)算,以培養(yǎng)學(xué)生運(yùn)算能力 解:作BEAD,CFAD,在RtABE和RtCDF中, AE=3BE=3×23=69(m) FD=2.5CF=2.5×23=57.5(m)
35、60;AD=AE+EF+FD=69+6+57.5=132.5(m) 因?yàn)樾逼翧B的坡度itan0.3333, 18°26 答:斜坡AB的坡角約為18°26,壩底寬AD為132.5米,斜坡AB的長約為72.7米其實(shí)這是舊人教版的一個例題,由于新版里這樣的內(nèi)容和題目并不少,但是對于題目里用的術(shù)語新版少提,基于學(xué)生的接受情況應(yīng)插講這一內(nèi)容。 (三)鞏固再現(xiàn)1、P91 22、利用土埂修筑一條渠道,在埂中間挖去深為0.6米的一塊(圖6-35陰影部分是挖去部分),已知渠道內(nèi)坡度為11.5,渠道底面寬BC為0.5米,求: 橫斷面(等腰梯
36、形)ABCD的面積; 修一條長為100米的渠道要挖去的土方數(shù) 四、布置作業(yè)P97. 8課題 數(shù)學(xué)活動 一、教學(xué)目標(biāo)1. 鞏固所學(xué)的三角函數(shù),學(xué)會制作和應(yīng)用測傾器,能正確測量底部可以到達(dá)的物體高度2. 培養(yǎng)學(xué)生動手實(shí)踐能力,在實(shí)際操作中培養(yǎng)學(xué)生分析問題、解決問題的能力3. 滲透數(shù)學(xué)來源于實(shí)踐,又反過來作用于實(shí)際的辯證唯物主義觀點(diǎn),培養(yǎng)學(xué)生用數(shù)學(xué)的意義;培養(yǎng)學(xué)生獨(dú)立思考、大膽創(chuàng)新的精神 二、教學(xué)重點(diǎn)、難點(diǎn) 重點(diǎn):培養(yǎng)學(xué)生解決實(shí)際問題的能力和用數(shù)學(xué)知識的意識難點(diǎn):能根據(jù)實(shí)際需要進(jìn)行測量三、教學(xué)過程 (一)復(fù)習(xí)引入 1檢查預(yù)習(xí)效果 (1)這節(jié)課我們將制作什么工具? (2)測角儀有哪幾個結(jié)構(gòu)?并對照實(shí)物,請學(xué)生加以解釋。 (3)測角儀測傾斜角的原理是什么? 通過對以上三個問題的解答,全體學(xué)生基本掌握測角儀測量傾斜角的原理,了解測角儀的結(jié)構(gòu);這樣教師可把學(xué)生分組,制作測角儀 2在組長的帶領(lǐng)下,全體學(xué)生積極配合,共同制作測角儀 (1)用木板做一個半
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 實(shí)戰(zhàn)軟件設(shè)計(jì)師考試試題及答案大全
- 西方政治改革的重要性試題及答案
- 機(jī)電工程項(xiàng)目完工驗(yàn)收標(biāo)準(zhǔn)試題及答案
- 云計(jì)算技術(shù)對數(shù)字教育生態(tài)的支撐作用
- 2025年能源互聯(lián)網(wǎng)分布式能源交易機(jī)制與能源互聯(lián)網(wǎng)政策環(huán)境優(yōu)化研究報(bào)告
- 比較西方與法國的政治體制演變過程試題及答案
- 機(jī)電工程現(xiàn)場管理的考察要點(diǎn)試題及答案
- 用戶旅程地圖在設(shè)計(jì)中的應(yīng)用與試題與答案
- 機(jī)電工程考試回顧與試題及答案解析
- 機(jī)電系統(tǒng)控制試題及答案
- 2025-2030中國旅游行業(yè)現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報(bào)告
- 四川省成都市青羊區(qū)2024年中考語文二模試卷(含答案)
- 2025屆高考語文專題復(fù)習(xí):散文內(nèi)容要點(diǎn)概括分析散文形象 課件
- 《貴州省安全生產(chǎn)風(fēng)險(xiǎn)分級管控和隱患排查治理“雙控”體系建設(shè)實(shí)施指南(2018年試行)》
- 教育數(shù)學(xué)概論知到智慧樹章節(jié)測試課后答案2024年秋成都師范學(xué)院
- 2025“背鍋”第一案!寧夏興爾泰化工集團(tuán)有限公司“12·2”事故調(diào)查報(bào)告課件
- 落地式腳手架專項(xiàng)施工方案
- 體彩代銷者考試題及答案
- 四川省攀枝花市重點(diǎn)名校2025屆中考聯(lián)考生物試題含解析
- 百團(tuán)進(jìn)萬企安全專題宣講
- 狐疝中醫(yī)相關(guān)知識
評論
0/150
提交評論