




下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、誤差分類及特性(一) 誤差分類根據(jù)觀測(cè)誤差性質(zhì),可將其分為系統(tǒng)誤差和偶然誤差兩類。(1)系統(tǒng)誤差在相同的觀測(cè)條件下,對(duì)某量作一系列觀測(cè),如果誤差的出現(xiàn)在符號(hào)和大小相同或按一定規(guī)律變化,這種誤差稱為系統(tǒng)誤差。系統(tǒng)誤差對(duì)成果的影響具有規(guī)律性,可采取一定措施或采用改正公式消除或削弱其對(duì)觀測(cè)成果的影響。主要方法有:在觀測(cè)方法和程序上采取必要措施削弱其影響,如角度測(cè)量中,經(jīng)緯儀盤左盤右觀測(cè),消除視準(zhǔn)差、橫軸誤差和豎盤指標(biāo)差等系統(tǒng)誤差影響;水準(zhǔn)測(cè)量中的前后視距相等,消除視準(zhǔn)軸和水準(zhǔn)管軸不平行引起的角誤差、地球曲率和大氣折光對(duì)觀測(cè)高差影響;找出產(chǎn)生系統(tǒng)誤差的原因,利用公式對(duì)觀測(cè)值進(jìn)行改正,如對(duì)鋼尺量丈量距離
2、,應(yīng)加尺長(zhǎng)改正、溫度改正、地球曲率改正,以消除該三項(xiàng)系統(tǒng)誤差影響等。(2)偶然誤差在相同的觀測(cè)條件下,對(duì)某量作一系列觀測(cè),如果誤差的出現(xiàn)在符號(hào)和大小均不一致,即從表面上看,沒(méi)有什么規(guī)律性,這種誤差稱為偶然誤差,偶然誤差又稱為隨機(jī)誤差。偶然誤差是由于人的感覺(jué)器官和儀器的性能受到一定的限制,以及觀測(cè)時(shí)受到外界條件中氣溫、濕度、風(fēng)力、明亮度、大氣等的影響產(chǎn)生的。例如用刻至1mm的鋼尺,只能估讀到十分之一毫米,讀數(shù)時(shí)可能偏大,也可能偏小,從而產(chǎn)生讀數(shù)誤差,其對(duì)成果的影響符號(hào)和大小不具有預(yù)見(jiàn)性,對(duì)觀測(cè)結(jié)果影響呈現(xiàn)出偶然。測(cè)量工作過(guò)程中,除了上述兩種誤差外,還可能發(fā)生錯(cuò)誤,即粗差,粗差不是觀測(cè)誤差。粗差大
3、多是由于是作業(yè)員疏忽大意造成的,如大數(shù)被讀錯(cuò)、記錯(cuò)等。為有效的發(fā)現(xiàn)粗差,采取必要的重復(fù)觀測(cè)、多余觀測(cè)、嚴(yán)格的檢驗(yàn)、驗(yàn)算等措施,一經(jīng)發(fā)現(xiàn)存在粗差,必須舍棄或進(jìn)行重測(cè),及時(shí)更正。(二)偶然誤差特性偶然誤差,從單個(gè)誤差看,其大小和符號(hào)沒(méi)有規(guī)律性,即呈現(xiàn)出一種偶然性(隨機(jī)性),但隨著觀測(cè)個(gè)數(shù)的增多,則呈現(xiàn)出一定的明顯的統(tǒng)計(jì)規(guī)律性。下面通過(guò)事例來(lái)說(shuō)明。在某測(cè)區(qū),在相同的條件下,獨(dú)立地觀測(cè)358個(gè)三角形的全部?jī)?nèi)角,由于觀測(cè)值含有誤差,各三內(nèi)角觀測(cè)值之和不等于其真值180°。由(41)式知三角形內(nèi)角和的真誤差可由下式算出: 42式中()表示各三角形內(nèi)角觀測(cè)值之和?,F(xiàn)取誤差區(qū)間的間隔,將按絕對(duì)值的大
4、小排列。統(tǒng)計(jì)出在各區(qū)間內(nèi)的正負(fù)誤差個(gè)數(shù),列成誤差頻率分布表,出現(xiàn)在某區(qū)間的誤差的個(gè)數(shù)稱為頻數(shù),用k表示,頻數(shù)除以誤差的總個(gè)數(shù)n得k/n,稱此為誤差在該區(qū)間的頻率。為更直觀,根據(jù)表的數(shù)據(jù)畫出直方圖。橫坐標(biāo)表示正負(fù)誤差的大小,縱坐標(biāo)表示各區(qū)間內(nèi)誤差出現(xiàn)的頻率除以區(qū)間的間隔,統(tǒng)計(jì)結(jié)果如表4-1,由該表看出,該組誤差具有如下規(guī)律:小誤差比大誤差出現(xiàn)的機(jī)會(huì)多,絕對(duì)值相等的正、負(fù)誤差出現(xiàn)的個(gè)數(shù)相近;最大的誤差不超過(guò)一定的限值。通過(guò)大量的實(shí)踐,可以總結(jié)出偶然誤差具有如下四個(gè)統(tǒng)計(jì)特性:(1) 在一定的觀測(cè)條件下,偶然誤差的絕對(duì)值不超過(guò)一定的限值。(2) 絕對(duì)值小的誤差比絕對(duì)值大的誤差出現(xiàn)的概率大。(3) 絕對(duì)
5、值相等的正、負(fù)誤差出現(xiàn)的機(jī)會(huì)相等。(4) 隨著觀測(cè)次數(shù)無(wú)限增加,偶然誤差的算術(shù)平均值趨近于零。即 4-3 n觀測(cè)次數(shù), 表示求和。誤差頻率分布表 表41 誤差區(qū)間+備注02450.1260.0630460.1280.0640d=224400.112005600410.1150.057546330.0920.0460330.0920.046068230.0640.0320210.0590.0295810170.0470.0280160.0450.02251012130.0360.0180130.0360.0180121460.0170.008550.0140.0070141640.0110.00
6、5520.0060.003016以上000000.0001810.5051770.495 (a)直方圖 (b)分布曲線圖4-1 頻率直方圖由偶然誤差統(tǒng)計(jì)特性可知,當(dāng)對(duì)某量有足夠多的觀測(cè)次數(shù)時(shí),其正負(fù)誤差可以相互抵消。因此,可采用多次觀測(cè),并取其算術(shù)平均值的方法,來(lái)減小偶然誤差對(duì)觀測(cè)結(jié)果的影響。觀測(cè)值偏離真值的程度,稱為觀測(cè)值的準(zhǔn)確度。系統(tǒng)誤差對(duì)觀測(cè)值的準(zhǔn)確度有較大的影響。故必需按照系統(tǒng)誤差的性質(zhì)和特點(diǎn)對(duì)觀測(cè)成果進(jìn)行處理。在一定觀測(cè)條件下對(duì)應(yīng)的一組誤差分布,如果該組誤差總的來(lái)說(shuō)偏小些,如圖4-1中曲線峰值較高,誤差分布就較集中,反之絕對(duì)值較多時(shí),分布就較分散,所以誤差分布的離散程度,反映了觀測(cè)結(jié)
7、果精度高低,其分布越集中,則觀測(cè)結(jié)果的精度越高,反之越低。所以通常由偶然誤差大小和分布狀態(tài),評(píng)定成果的精度。 (三)測(cè)量精度指標(biāo)精度是指對(duì)某個(gè)量的進(jìn)行多次同精度觀測(cè)中,其偶然誤差分布的密集程度或離散程度。為了衡量觀測(cè)結(jié)果精度的高低,必須有一個(gè)衡量精度的標(biāo)準(zhǔn),常用的有:(1)中誤差在相同的觀測(cè)條件下,對(duì)某量進(jìn)行多次觀測(cè),得到一組等精度的獨(dú)立觀測(cè)值,每個(gè)觀測(cè)值的真誤差為,方差的定義為: 44式中,n觀測(cè)次數(shù),方差的平方根稱為標(biāo)準(zhǔn)差在實(shí)際工作中,觀測(cè)次數(shù)有限,取觀測(cè)值真誤差平方和的平均值,再開(kāi)方定義為中誤差,作為衡量該組觀測(cè)值精度指標(biāo),即: 45式中m中誤差一組等精度觀測(cè)誤差的平方總和n觀測(cè)數(shù)標(biāo)準(zhǔn)差
8、要求,中誤差是有限時(shí)求得的標(biāo)準(zhǔn)差估值,當(dāng),中誤差接近標(biāo)準(zhǔn)差。中誤差值小,表明誤差的分布較為密集,各觀測(cè)值之間的差異也較小,這組觀測(cè)的精度就高;反之,中誤差值較大,表明誤差的分布較為離散,觀測(cè)值之間的差異也大,這組觀測(cè)的精度就低。當(dāng)觀測(cè)量的真值未知時(shí),計(jì)算多次等精度觀測(cè)值的算術(shù)平均值: 46 利用偶然誤差算術(shù)平均值趨近于零特性,算術(shù)平均值比任一觀測(cè)值更接近于真值,該結(jié)論將在4.3節(jié)中詳細(xì)證明。我們把最接近于真值的近似值稱為最或然值或稱為最可靠值。令 () 47稱觀測(cè)值的改正數(shù),在4.3節(jié)將證明其總和等于零。此時(shí),用觀測(cè)值的改正數(shù)中誤差計(jì)算公式應(yīng)為: 48式中:n觀測(cè)次數(shù);v改正數(shù),即算術(shù)平均值L
9、與各觀測(cè)值之差。(4-8)式是用觀測(cè)值的改正數(shù)即最或然誤差計(jì)算觀測(cè)值中誤差最常用的實(shí)用公式,又稱白塞爾公式。(2)平均誤差在相同的觀測(cè)條件下,得到一組獨(dú)立的真誤差的絕對(duì)值的算術(shù)平均值的極限定義為平均誤差: 49式中 真誤差的絕對(duì)值; n觀測(cè)數(shù)。當(dāng)觀測(cè)數(shù)n有限時(shí),計(jì)算的估值,即 410稱為平均誤差,其可靠性不如中誤差,我國(guó)統(tǒng)一采用中誤差作為衡量精度指標(biāo)。(3)相對(duì)中誤差在衡量觀測(cè)精度時(shí),有時(shí)依據(jù)中誤差并不能反映測(cè)量精度的優(yōu)劣。例如,分別丈量了長(zhǎng)度為100m和50m的兩段距離,其中誤差均為0.02m,是否說(shuō)明兩段距離丈量的精度相同呢?顯然不能,此時(shí),必須引入相對(duì)誤差衡量精度。相對(duì)中誤差是中誤差的絕對(duì)值與觀測(cè)值的比值,為無(wú)量綱數(shù)。通常分子為1,分母為整數(shù)的分?jǐn)?shù)形式表示,即 411式中:K相對(duì)中誤差或簡(jiǎn)稱相對(duì)誤差;m距離L的觀測(cè)中誤差。上例中: ; 故第一段距離的相對(duì)誤差較小,即第一段距離精度高。(4)容許誤差偶然誤差特性表明,在一定的觀測(cè)條件下,偶然誤差的絕對(duì)值不超過(guò)一定的限值。根據(jù)誤差理論和大量的實(shí)踐證明:在等精度觀測(cè)某量的一組誤差中,大于兩倍中誤差的偶然誤差出現(xiàn)的概率為4
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 等我拿下數(shù)學(xué)試卷
- 甘肅金太陽(yáng)高一數(shù)學(xué)試卷
- 肌內(nèi)效貼技術(shù)課件
- 2025年03月臨沂臨沭縣部分醫(yī)療衛(wèi)生事業(yè)單位公開(kāi)招聘衛(wèi)生類崗位工作人員(38名)筆試歷年專業(yè)考點(diǎn)(難、易錯(cuò)點(diǎn))附帶答案詳解
- 2025年04月四川廣元市旺蒼縣人民醫(yī)院招聘藥學(xué)等專業(yè)人員3人筆試歷年專業(yè)考點(diǎn)(難、易錯(cuò)點(diǎn))附帶答案詳解
- 陳列手法培訓(xùn)課件
- 阜陽(yáng)美睫培訓(xùn)課件
- 面試人員培訓(xùn)課件
- 財(cái)富傳家b課件培訓(xùn)
- 2025至2030茶幾行業(yè)市場(chǎng)深度研究及發(fā)展前景投資可行性分析報(bào)告
- 實(shí)驗(yàn)室資質(zhì)認(rèn)定質(zhì)量技術(shù)負(fù)責(zé)人培訓(xùn)
- 綜合實(shí)踐活動(dòng)評(píng)價(jià)表完整
- GB∕T 16422.3-2022 塑料 實(shí)驗(yàn)室光源暴露試驗(yàn)方法 第3部分:熒光紫外燈
- 菲迪克(FIDIC)簡(jiǎn)明合同格式-中英對(duì)照版
- 浙江省基礎(chǔ)教育地方課程(通用內(nèi)容)標(biāo)準(zhǔn)1-9年級(jí)
- 滿堂腳手架專項(xiàng)施工方案
- AVL燃燒分析及在標(biāo)定的應(yīng)用培訓(xùn)
- 線束裝配作業(yè)指導(dǎo)書(shū)
- 跨國(guó)并購(gòu)中的知識(shí)轉(zhuǎn)移——沈陽(yáng)機(jī)床并購(gòu)德國(guó)希斯的案例研究
- 北京大學(xué)交換學(xué)生課程成績(jī)認(rèn)定及學(xué)分轉(zhuǎn)換表(一)
- 南京連鎖藥店明細(xì)(醫(yī)保)
評(píng)論
0/150
提交評(píng)論