二次函數(shù)中的競賽題_第1頁
二次函數(shù)中的競賽題_第2頁
二次函數(shù)中的競賽題_第3頁
二次函數(shù)中的競賽題_第4頁
二次函數(shù)中的競賽題_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上專心-專注-專業(yè) 20112012 初中培優(yōu)競賽講義(初三組)第 4 講 二次函數(shù)競賽訓練題1二次函數(shù)的圖象的頂點為 D,與 x 軸正方向從左至右依次交于 A,B 兩點,與 y 軸正方向cbxxy2交于 C 點,若ABD 和OBC 均為等腰直角三角形(O 為坐標原點) ,則 cb22在直角坐標系中有三點 A(0,1) ,B(1,3) ,C(2,6) ;已知直線上橫坐標為 0、1、2 的點分baxy別為 D、E、F.試求的值使得 AD2+BE2+CF2達到最大值.ba,3.(2004 年“TRULY信利杯”全國初中數(shù)學競賽試題)實數(shù) x、y、z 滿足 x+y+z=5,x

2、y+yz+zx=3,則 z 的最大值是_4.已知直線與拋物線相交于 A、B 兩點,O 為坐標原點,那么OAB 的面積等于32 xy2xy _。5.(2003 年“TRULY信利杯”全國初中數(shù)學競賽試題)已知二次函數(shù) y=ax2+bx+c(其中 a 是正整數(shù))的圖象經(jīng)過點 A(-1,4)與點 B(2,1) ,并且與 x軸有兩個不同的交點,則 b+c 的最大值為_6.設(shè)拋物線的圖象與 x 軸只有一個交點, (1)求 a 的值;(2)求的452122axaxy618323aa值.7. 通過實驗研究,專家們發(fā)現(xiàn):初中學生聽課的注意力指標數(shù)是隨著老師講課時間的變化而變化的,講課開始時,學生的興趣激增,中

3、間有一段時間,學生的興趣保持平穩(wěn)的狀態(tài),隨后開始分散. 學生注意力指標數(shù) y隨時間 x(分鐘)變化的函數(shù)圖象如圖所示(y 越大表示學生注意力越集中). 當時,圖象是拋物100 x線的一部分,當和時,圖象是線段.2010 x4020 x精選優(yōu)質(zhì)文檔-傾情為你奉上專心-專注-專業(yè)(1)當時,求注意力指標數(shù) y 與時間 x 的函數(shù)關(guān)系式;100 x(2)一道數(shù)學競賽題需要講解 24 分鐘. 問老師能否經(jīng)過適當安排,使學生在聽這道題時,注意力的指標數(shù)都不低于 36.8課題研究:現(xiàn)有邊長為 120 厘米的正方形鐵皮,準備將它設(shè)計并制成一個開口的水槽,使水槽能通過的水的流量最大 初三(1)班數(shù)學興趣小組經(jīng)

4、討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大為此,他們對水槽的橫截面進行了如下探索: (1)方案:把它折成橫截面為直角三角形的水槽(如圖 a) 若ACB=90,設(shè) AC=x 厘米,該水槽的橫截面面積為 y 厘米2,請你寫出 y 關(guān)于 x 的函數(shù)關(guān)系式(不必寫出 x 的取值范圍) ,并求出當 x 取何值時,y 的值最大,最大值又是多少? 方案:把它折成橫截面為等腰梯形的水槽(如圖 b) 若ABC=120,請你求出該水槽的橫截面面積的最大值,并與方案中的 y 的最大值比較大?。?)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設(shè)計的水槽的橫截面面積更

5、大畫出你設(shè)計的草圖,標上必要的數(shù)據(jù)(不要求寫出解答過程) 9如圖,拋物線與雙曲線相交于點 A,B. 已知點 A 的坐標為(1,4) ,點 B 在第2(0)yaxbx akyx三象限內(nèi),且AOB 的面積為 3(O 為坐標原點).(1)求實數(shù) a,b,k 的值;(2)過拋物線上點 A 作直線 ACx 軸,交拋物線于另一點 C,求所有滿足EOCAOB 的點 E 的坐標.精選優(yōu)質(zhì)文檔-傾情為你奉上專心-專注-專業(yè)10.如圖,拋物線與軸交于兩點,與軸交于點.2230ymxmxm mxAB、yC(1)請求出拋物線頂點的坐標(用含的代數(shù)式表示) ,兩點的坐標;MmAB、(2)經(jīng)探究可知,與的面積比不變,試求

6、出這個比值;BCMABC(3)是否存在使為直角三角形的拋物線?若存在,請求出;如果不存在,請說明BCM理由.11已知拋物線與動直線有公共點,且.2yxcxty) 12(),(11yx),(22yx3222221ttxx (1)求實數(shù) t 的取值范圍; (2)當 t 為何值時,c 取到最小值,并求出 c 的最小值.12.已知,且,求的最小值.0a0b0cacbacb242acb4213. 在自變量 x 的取值范圍 59x60 內(nèi),二次函數(shù)的函數(shù)值中整數(shù)的個數(shù)是( )212yxxA.59 B.120 C.118 D.6014. 在直角坐標系中,拋物線與 x 軸交于 A,B 的兩點.若 A,B 兩點

7、到原點的距223(0)4yxmxm m離分別為 OA,OB,且滿足,則 m=_ _.1123OBOA15. RtABC 的三個頂點 A,B,C 均在拋物線上,并且斜邊 AB 平行于 x 軸若斜邊上的高為 h,則2xy ( )(A)h1 (B)h=1 (C)1h216. 設(shè) 0k1,關(guān)于 x 的一次函數(shù),當 1x2 時的最大值是( ))1 (1xkkxy(A)k (B) (C) (D)kk12 k1kk117. 平面直角坐標系中,如果把橫坐標、縱坐標都是整數(shù)的點叫做整點,那么函數(shù)的圖象上整點1212xxy的個數(shù)是 ( )精選優(yōu)質(zhì)文檔-傾情為你奉上專心-專注-專業(yè) 圖 6-2 y x 0 1 (A

8、)2 個 (B)4 個 (C)6 個 (D)8 個18. 函數(shù)的最小值是 1422xxy19.對,二次函數(shù)的最小值為()220baab ,)(bxaxyA. B. C. D. 2)2(ba 2)2(ba 2)2(ba 2)2(ba 20.兩拋物線和與 x 軸交于同一點(非原點) ,且 a、b、c 為正數(shù),222baxxy222bcxxyac,則以 a、b、c 為邊的三角形一定是() A. 等腰直角三角形B. 直角三角形C. 等腰三角形 D. 等腰或直角三角形21.當 n=1,2,3,2003,2004 時,二次函數(shù)的圖象與 x 軸所截得的線1) 12()(22xnxnny段長度之和為()A.

9、B. C. D. 2003200220042003200520042006200522.已知二次函數(shù)圖象如圖 6-2 所示,則下列式子: ab,ac,a+b+c,cbxaxy2a-b+c,2a+b,2a-b 中,其值為正的式子共有 個.23.如果當 m 取不等于 0 和 1 的任意實數(shù)時,拋物線在平面直角坐標系上都過兩mmxmxmmy3212個定點,那么這兩個定點間的距離為24.已知拋物線與 x 軸兩個交點 A、B 不全在原點的左側(cè),拋物線頂點為 C,要使ABC1) 1(2xkxy恰為等邊三角形,那么 k 的值為25.設(shè) x 為實數(shù),則函數(shù)的最小值是12156322xxxxy26.設(shè)二次函數(shù)

10、的圖象經(jīng)過點(2,-1) , 且與 x 軸交于不同的兩點 A(x1,0) B(x2,0) ,qpxxy2精選優(yōu)質(zhì)文檔-傾情為你奉上專心-專注-專業(yè)FEGABCDAtsONMHGFEDCBADtsOBtsOCtsOM 為二次函數(shù)圖象的頂點,求使AMB 面積最小時的二次函數(shù)的解析式.27.已知:3x2+2y2=6x, x 和 y 都是實數(shù),求:x2+y2 的最大、最小值.28.中,B=,AC=1,求 BA+BC 的最大值及這時三角形的形狀.ABC6029.如圖,點、在直線上,點、在直線上,若,從如圖所示 的GDCaEFABbabRt GEF位置出發(fā),沿直線向右勻速運動,直到與重合運動過程中與矩形重

11、合部分的面積bEGBCGEFABCD隨時間變化的圖象大致是( ) S t30.(南京)如圖,、分別是邊長為的正方形的邊上的點,,直線 EF4ABCDBCCD,413CECF,EF交的延長線于,過線段上的一個動點作,垂足分別為,設(shè),ABGFGHHMAGHNADMN,HMx矩形的面積為AMHNy 求與之間的函數(shù)關(guān)系式;yx 當為何值時,矩形的面積最大,最大面積為多少?xAMHN31.已知某種水果的批發(fā)單價與批發(fā)量的函數(shù)關(guān)系如圖(1)所示(1)請說明圖中、兩段函數(shù)圖象的實際意義(2)寫出批發(fā)該種水果的資金金額 w(元)與批發(fā)量 m(kg)之間的函數(shù)關(guān)系式;在下圖的坐標系中畫出該函數(shù)圖象;指出金額在什

12、么范圍內(nèi),以同樣的資金可以批發(fā)到較多數(shù)量的該種水果(3)經(jīng)調(diào)查,某經(jīng)銷商銷售該種水果的日最高銷量與零售價之間的函數(shù)關(guān)系如圖(2)所示,該經(jīng)銷商擬每日精選優(yōu)質(zhì)文檔-傾情為你奉上專心-專注-專業(yè)-2-1 O1x2價 價 價 價 kg價價 價 價 價 價 價 價O602045售出 60kg 以上該種水果,且當日零售價不變,請你幫助該經(jīng)銷商設(shè)計進貨和銷售的方案,使得當日獲得的利潤最大.764080價 價 價 價 價 價價 價 價 價 價 價 kg價O32函數(shù)的最小值為 m,則當 m 達到最大時,x_623) 12(222kkxkxy(2004 年全國初中數(shù)學聯(lián)賽)33設(shè) a,b 為實常數(shù),k 取任意實

13、數(shù)時,函數(shù)的圖像與 x)3()(2) 1(2222bakkxkaxkky軸交于點 A(1,0) (1)求 a,b 的值(2)若函數(shù)與 x 軸的另一個交點為 B,當 k 變化時,求 AB 的最大值34.(2007 年福州)如圖所示,二次函數(shù)(a0)的圖象經(jīng)過點(1,2) ,且與 x 軸交點的2yaxbxc橫坐標分別為、,其中21,01,下列結(jié)論:1x2x1x2x;a1;.其中正確的有:( )420abc20ab284baac A、1 個 B、2 個 C、3 個 D、4 個 35.(2007 年天門)施工隊要修建一個橫斷面為拋物線的公路隧道,其高度為 6 米,寬度 OM 為 12 米,現(xiàn)在O 點為

14、原點,OM 所在直線為 x 軸建立直角坐標系(如圖所示) (1)直接寫出點 M 及拋物線頂點 P 的坐標; (2)求出這條拋物線的函數(shù)解析式;(3)施工隊計劃在隧道門口搭建一個矩形“腳手架”ABCD,使 A、D 點在拋物線上,B、C 點在地面 OM上為了籌備材料,需求出“腳手架”三根木桿 AB、AD、DC 的長度之和的最大值是多少?請你幫施工隊計算一下精選優(yōu)質(zhì)文檔-傾情為你奉上專心-專注-專業(yè) 36.(2009 年天津市)已知函數(shù)為方程的兩個根,點在212yxyxbxc,120yy1MT,函數(shù)的圖象上2y()若,求函數(shù)的解析式;1132,2y()在()的條件下,若函數(shù)與的圖象的兩個交點為,當?shù)拿娣e為時,求 的值;1y2yAB,ABM112t()若,當時,試確定三者之間的大小關(guān)系,并說明理由0101t T,37. 已知點 A(0,3),B(-2,-1),C(2,-1) P(t,t2)為拋物線 yx2上位于三角形 ABC 內(nèi)(包括邊界)的一動點,BP 所在的直線交 AC 于 E, CP 所在的直線交 AB 于 F。將表示為自變量 t 的函數(shù)。BFCE38在直角坐標系 xOy 中,一次函數(shù)的圖象與軸、軸的正半軸分別交于 A,B 兩點,bkxy0k ()xy且使得OAB 的面積值等于3OAOB(1)用 b 表示 k;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論