高中數(shù)學選修44知識點歸納_第1頁
高中數(shù)學選修44知識點歸納_第2頁
高中數(shù)學選修44知識點歸納_第3頁
高中數(shù)學選修44知識點歸納_第4頁
高中數(shù)學選修44知識點歸納_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、高中數(shù)學選修4-4知識點總結一、選考內容坐標系與參數(shù)方程高考考試大綱要求:1坐標系: 理解坐標系的作用. 了解在平面直角坐標系伸縮變換作用下平面圖形的變化情況. 能在極坐標系中用極坐標表示點的位置,理解在極坐標系和平面直角坐標系中表示點的位置的區(qū)別,能進行極坐標和直角坐標的互化. 能在極坐標系中給出簡單圖形(如過極點的直線、過極點或圓心在極點的圓)的方程.通過比較這些圖形在極坐標系和平面直角坐標系中的方程,理解用方程表示平面圖形時選擇適當坐標系的意義.2參數(shù)方程: 了解參數(shù)方程,了解參數(shù)的意義. 能選擇適當?shù)膮?shù)寫出直線、圓和圓錐曲線的參數(shù)方程.二、知識歸納總結:1伸縮變換:設點是平面直角坐標

2、系中的任意一點,在變換的作用下,點對應到點,稱為平面直角坐標系中的坐標伸縮變換,簡稱伸縮變換。2.極坐標系的概念:在平面內取一個定點,叫做極點;自極點引一條射線叫做極軸;再選定一個長度單位、一個角度單位(通常取弧度)及其正方向(通常取逆時針方向),這樣就建立了一個極坐標系。3點的極坐標:設是平面內一點,極點與點的距離叫做點的極徑,記為;以極軸為始邊,射線為終邊的叫做點的極角,記為。有序數(shù)對叫做點的極坐標,記為. 極坐標與表示同一個點。極點的坐標為.4.若,則,規(guī)定點與點關于極點對稱,即與表示同一點。如果規(guī)定,那么除極點外,平面內的點可用唯一的極坐標表示;同時,極坐標表示的點也是唯一確定的。 5

3、極坐標與直角坐標的互化:6。圓的極坐標方程:在極坐標系中,以極點為圓心,為半徑的圓的極坐標方程是 ; 在極坐標系中,以 為圓心, 為半徑的圓的極坐標方程是 ;在極坐標系中,以 為圓心,為半徑的圓的極坐標方程是;7.在極坐標系中,表示以極點為起點的一條射線;表示過極點的一條直線. 在極坐標系中,過點,且垂直于極軸的直線l的極坐標方程是.8參數(shù)方程的概念:在平面直角坐標系中,如果曲線上任意一點的坐標都是某個變數(shù)的函數(shù) 并且對于的每一個允許值,由這個方程所確定的點都在這條曲線上,那么這個方程就叫做這條曲線的參數(shù)方程,聯(lián)系變數(shù)的變數(shù)叫做參變數(shù),簡稱參數(shù)。相對于參數(shù)方程而言,直接給出點的坐標間關系的方程

4、叫做普通方程。9圓的參數(shù)方程可表示為. 橢圓的參數(shù)方程可表示為. 拋物線的參數(shù)方程可表示為. 經(jīng)過點,傾斜角為的直線的參數(shù)方程可表示為(為參數(shù)).10在建立曲線的參數(shù)方程時,要注明參數(shù)及參數(shù)的取值范圍。在參數(shù)方程與普通方程的互化中,必須使的取值范圍保持一致.練習1曲線與坐標軸的交點是( )A B C D 2把方程化為以參數(shù)的參數(shù)方程是( )A B C D 3若直線的參數(shù)方程為,則直線的斜率為( )A B C D4點在圓的( )A內部 B外部C圓上 D與的值有關5參數(shù)方程為表示的曲線是( )A一條直線 B兩條直線 C一條射線 D兩條射線6兩圓與的位置關系是( )A內切 B外切 C相離 D內含7與參數(shù)方程為等價的普通方程為( )A B C D8曲線的長度是( )A B C D9點是橢圓上的一個動點,則的最大值為( )A B C D10直線和圓交于兩點,則的中點坐標為( )A B C D11若點在以點為焦點的拋物線上,則等于( )A B C D 12直線被圓所截得的弦長為( )A B C D 13參數(shù)方程的普通方程為_14直線上與點的距離等于的點的坐標是_15直線與圓相切,則_16設,則圓的參數(shù)方程為_17求直線和直線的交點的坐標,及點與的距離18已知直線經(jīng)過點,傾斜角,(1)寫出直線的參數(shù)方程(2)設與圓相交與兩點,求點到兩點的距離之積19分別在下列兩種情況下,把參數(shù)方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論