




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1下圖是民航部門統(tǒng)計的某年春運期間,六個城市售出的往返機票的平均價格(單位元),以及相比于上一年同期價格變化幅度的數(shù)據(jù)統(tǒng)計圖,以下敘述不正確的是( )A深圳的變化幅度最小,北京的平均價格最高B天津的往返機票平均價格變化最大C上海和廣州的往返機票
2、平均價格基本相當D相比于上一年同期,其中四個城市的往返機票平均價格在增加2甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結論正確的是( )A丙被錄用了B乙被錄用了C甲被錄用了D無法確定誰被錄用了3已知m,n為異面直線,m平面,n平面,直線l滿足l m,l n,則( )A且B且C與相交,且交線垂直于D與相交,且交線平行于4對于定義在上的函數(shù),若下列說法中有且僅有一個是錯誤的,則錯誤的一個是( )A在上是減函數(shù)B在上是增函數(shù)C不是函數(shù)的最小值D對于,都有5等腰直角三角形BCD與等
3、邊三角形ABD中,現(xiàn)將沿BD折起,則當直線AD與平面BCD所成角為時,直線AC與平面ABD所成角的正弦值為( ) ABCD6設是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A若,則B若,,則C若,則D若,則7某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計如圖中的條形圖,已知年的就醫(yī)費用比年的就醫(yī)費用增加了元,則該人年的儲畜費用為( )A元B元C元D元8設為虛數(shù)單位,則復數(shù)在復平面內對應的點位于( )A第一象限B第二象限C第三象限D第四象限9如圖,在中, ,是上的一點,若,則實數(shù)的值為( )ABCD10趙爽是我國古代數(shù)學家、天文學家,大約公
4、元222年,趙爽為周髀算經(jīng)一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1),類比“趙爽弦圖”,可類似地構造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設,若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為( )ABCD11設m,n為直線,、為平面,則的一個充分條件可以是( )A,B,C,D,12已知復數(shù)z=2i1-i,則z的共軛復數(shù)在復平面對應的點位于( )A第一象限B第二象限C第三象限D第四象限二、填空題:本題共4小題,每小題5分,共20分。13集合,則_
5、.14已知平面向量,的夾角為,且,則=_15已知函數(shù),若關于的方程在定義域上有四個不同的解,則實數(shù)的取值范圍是_.16已知雙曲線(a0,b0)的兩個焦點為、,點P是第一象限內雙曲線上的點,且,tanPF2F12,則雙曲線的離心率為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知()過點,且當時,函數(shù)取得最大值1.(1)將函數(shù)的圖象向右平移個單位得到函數(shù),求函數(shù)的表達式;(2)在(1)的條件下,函數(shù),求在上的值域.18(12分)在最新公布的湖南新高考方案中,“”模式要求學生在語數(shù)外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學、生物、地理、
6、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉換后計入高考總分.相應地,高校在招生時可對特定專業(yè)設置具體的選修科目要求.雙超中學高一年級有學生1200人,現(xiàn)從中隨機抽取40人進行選科情況調查,用數(shù)字16分別依次代表歷史、物理、化學、生物、地理、政治6科,得到如下的統(tǒng)計表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235
7、182362823538134923519145292463923510236202353015640245(1)雙超中學規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當且僅當一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的1位老師只教1個班).已知雙超中學高一年級現(xiàn)有化學、生物科目教師每科各8人,用樣本估計總體,則化學、生物兩科的教師人數(shù)是否需要調整?如果需要調整,各需增加或減少多少人?(2)請創(chuàng)建列聯(lián)表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關.附:0.1000.0500.0100.0012.7063.8416.63
8、510.828(3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現(xiàn)從雙超中學高一新生中隨機抽取3人,設具備高校專業(yè)報名資格的人數(shù)為,用樣本的頻率估計概率,求的分布列與期望.19(12分)記數(shù)列的前項和為,已知成等差數(shù)列.(1)證明:數(shù)列是等比數(shù)列,并求的通項公式;(2)記數(shù)列的前項和為,求.20(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的單調區(qū)間;(3)判斷函數(shù)的零點個數(shù).21(12分)在中,角所對的邊分別是,且.(1)求;(2)若,求.22(10分)已知橢圓:的離心率為,直線:與以原點為圓心,以橢圓的短
9、半軸長為半徑的圓相切.為左頂點,過點的直線交橢圓于,兩點,直線,分別交直線于,兩點.(1)求橢圓的方程;(2)以線段為直徑的圓是否過定點?若是,寫出所有定點的坐標;若不是,請說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】根據(jù)條形圖可折線圖所包含的數(shù)據(jù)對選項逐一分析,由此得出敘述不正確的選項.【詳解】對于A選項,根據(jù)折線圖可知深圳的變化幅度最小,根據(jù)條形圖可知北京的平均價格最高,所以A選項敘述正確.對于B選項,根據(jù)折線圖可知天津的往返機票平均價格變化最大,所以B選項敘述正確.對于C選項,根據(jù)條形圖可知上海和廣州
10、的往返機票平均價格基本相當,所以C選項敘述正確.對于D選項,根據(jù)折線圖可知相比于上一年同期,除了深圳外,另外五個城市的往返機票平均價格在增加,故D選項敘述錯誤.故選:D【點睛】本小題主要考查根據(jù)條形圖和折線圖進行數(shù)據(jù)分析,屬于基礎題.2C【解析】假設若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎題.3D【解析】試題分析:由平面,
11、直線滿足,且,所以,又平面,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D考點:平面與平面的位置關系,平面的基本性質及其推論4B【解析】根據(jù)函數(shù)對稱性和單調性的關系,進行判斷即可【詳解】由得關于對稱,若關于對稱,則函數(shù)在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時也錯誤,不滿足條件故錯誤的是,故選:【點睛】本題主要考查函數(shù)性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵5A【解析】設E為BD中點,連接AE、CE,過A作于點O,連接DO,得到即為直線AD與平面BC
12、D所成角的平面角,根據(jù)題中條件求得相應的量,分析得到即為直線AC與平面ABD所成角,進而求得其正弦值,得到結果.【詳解】設E為BD中點,連接AE、CE,由題可知,所以平面,過A作于點O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點O與點C重合,此時有平面,過C作與點F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,故選:A.【點睛】該題考查的是有關平面圖形翻折問題,涉及到的知識點有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.6C【解析】在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;
13、在D中,與平行或【詳解】設是兩條不同的直線,是兩個不同的平面,則:在A中,若,則與相交或平行,故A錯誤;在B中,若,則或,故B錯誤;在C中,若,則由線面垂直的判定定理得,故C正確;在D中,若,則與平行或,故D錯誤故選C【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題7A【解析】根據(jù) 2018年的家庭總收人為元,且就醫(yī)費用占 得到就醫(yī)費用,再根據(jù)年的就醫(yī)費用比年的就醫(yī)費用增加了元,得到年的就醫(yī)費用,然后由年的就醫(yī)費用占總收人,得到2019年的家庭總收人再根據(jù)儲畜費用占總收人求解.【詳解】因為2018年的家庭總收人為元,且就醫(yī)費用占 所以就醫(yī)費用因為年的就
14、醫(yī)費用比年的就醫(yī)費用增加了元,所以年的就醫(yī)費用元,而年的就醫(yī)費用占總收人所以2019年的家庭總收人為而儲畜費用占總收人所以儲畜費用:故選:A【點睛】本題主要考查統(tǒng)計中的折線圖和條形圖的應用,還考查了建模解模的能力,屬于基礎題.8A【解析】利用復數(shù)的除法運算化簡,求得對應的坐標,由此判斷對應點所在象限.【詳解】,對應的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)對應點所在象限,屬于基礎題.9B【解析】變形為,由得,轉化在中,利用三點共線可得.【詳解】解:依題: ,又三點共線,解得故選:【點睛】本題考查平面向量基本定理及用向量共線定理求參數(shù). 思路是(1)先選擇
15、一組基底,并運用該基底將條件和結論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值. (2)直線的向量式參數(shù)方程: 三點共線 (為平面內任一點,)10D【解析】設,則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結論.【詳解】由題意,設,則,即小正六邊形的邊長為,所以,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎知識,考查運算求解能力,屬于基礎題11B【解析】根據(jù)
16、線面垂直的判斷方法對選項逐一分析,由此確定正確選項.【詳解】對于A選項,當,時,由于不在平面內,故無法得出.對于B選項,由于,所以.故B選項正確.對于C選項,當,時,可能含于平面,故無法得出.對于D選項,當,時,無法得出.綜上所述,的一個充分條件是“,”故選:B【點睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎題.12C【解析】分析:根據(jù)復數(shù)的運算,求得復數(shù)z,再利用復數(shù)的表示,即可得到復數(shù)對應的點,得到答案詳解:由題意,復數(shù)z=2i1-i=2i1+i1-i1+i=-1+i,則z=-1-i所以復數(shù)z在復平面內對應的點的坐標為(-1,-1),位于復平面內的第三象限,故選C點睛
17、:本題主要考查了復數(shù)的四則運算及復數(shù)的表示,其中根據(jù)復數(shù)的四則運算求解復數(shù)z是解答的關鍵,著重考查了推理與運算能力二、填空題:本題共4小題,每小題5分,共20分。13【解析】分析出集合A為奇數(shù)構成的集合,即可求得交集.【詳解】因為表示為奇數(shù),故.故答案為:【點睛】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡單題.141【解析】根據(jù)平面向量模的定義先由坐標求得,再根據(jù)平面向量數(shù)量積定義求得;將化簡并代入即可求得.【詳解】,則,平面向量,的夾角為,則由平面向量數(shù)量積定義可得,根據(jù)平面向量模的求法可知,代入可得,解得,故答案為:1.【點睛】本題考查了平面向量模的求法及簡單應用,平面向量數(shù)量積的定義
18、及運算,屬于基礎題.15【解析】由題意可在定義域上有四個不同的解等價于關于原點對稱的函數(shù)與函數(shù)的圖象有兩個交點,運用參變分離和構造函數(shù),進而借助導數(shù)分析單調性與極值,畫出函數(shù)圖象,即可得到所求范圍.【詳解】已知定義在上的函數(shù)若在定義域上有四個不同的解等價于關于原點對稱的函數(shù)與函數(shù)f(x)=lnx-x(x0)的圖象有兩個交點,聯(lián)立可得有兩個解,即可設,則,進而且不恒為零,可得在單調遞增.由可得時,單調遞減;時,單調遞增,即在處取得極小值且為作出的圖象,可得時,有兩個解.故答案為:【點睛】本題考查利用利用導數(shù)解決方程的根的問題,還考查了等價轉化思想與函數(shù)對稱性的應用,屬于難題.16【解析】根據(jù)正弦
19、定理得,根據(jù)余弦定理得2PF1PF2cosF1PF23,聯(lián)立方程得到,計算得到答案.【詳解】PF1F2中,sinPF1F2,sinPF1F2,由正弦定理得,又,tanPF2F12,tanF1PF2tan(PF2F1+PF1F2),可得cosF1PF2,PF1F2中用余弦定理,得2PF1PF2cosF1PF23,聯(lián)解,得,可得,雙曲線的,結合,得離心率.故答案為:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和轉化能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17 (1);(2).【解析】試題分析:(1)由題意可得函數(shù)f(x)的解析式為,則.(2)整理函數(shù)h(x)
20、的解析式可得:,結合函數(shù)的定義域可得函數(shù)的值域為.試題解析:(1)由函數(shù)取得最大值1,可得,函數(shù)過得,.(2) ,值域為.18(1)不需調整(2)列聯(lián)表見解析;有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關(3)詳見解析【解析】(1)可估計高一年級選修相應科目的人數(shù)分別為120,2,推理得對應開設選修班的數(shù)目分別為15,1推理知生物科目需要減少4名教師,化學科目不需要調整(2)根據(jù)列聯(lián)表計算觀測值,根據(jù)臨界值表可得結論(3)經(jīng)統(tǒng)計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數(shù)為12,頻率為用頻率估計概率,則,根據(jù)二項分布概率公式可得分布列和數(shù)學期望【詳解】(1)經(jīng)統(tǒng)計可
21、知,樣本40人中,選修化學、生物的人數(shù)分別為24,11,則可估計高一年級選修相應科目的人數(shù)分別為120,2根據(jù)每個選修班最多編排50人,且盡量滿額編班,得對應開設選修班的數(shù)目分別為15,1現(xiàn)有化學、生物科目教師每科各8人,根據(jù)每位教師執(zhí)教2個選修班,當且僅當一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的一位教師執(zhí)教一個班的條件,知生物科目需要減少4名教師,化學科目不需要調整(2)根據(jù)表格中的數(shù)據(jù)進行統(tǒng)計后,制作列聯(lián)表如下:選物理不選物理 合計選化學 19524 不選化學 61016合計2515 40則,有的把握判斷學生”選擇化學科目”與“選擇物理科目”有關(3)經(jīng)統(tǒng)計,樣本中選修了歷史科目且在
22、政治和地理2門中至少選修了一門的人數(shù)為12,頻率為用頻率估計概率,則,分布列如下: 012 3 0.343 0.4410.1890.021數(shù)學期望為【點睛】本題主要考查了離散型隨機變量的期望與方差,考查獨立性檢驗,意在考查學生對這些知識的理解掌握水平和分析推理能力19(1)證明見解析,;(2)【解析】(1)由成等差數(shù)列,可得到,再結合公式,消去,得到,再給等式兩邊同時加1,整理可證明結果;(2)將(1)得到的代入中化簡后再裂項,然后求其前項和.【詳解】(1)由成等差數(shù)列,則,即,當時,又,由可得:,即,時,.所以是以3為首項,3為公比的等比數(shù)列,所以.(2),所以.【點睛】此題考查了數(shù)列遞推式,等比數(shù)列的證明,裂列相消求和,考查了學生分析問題和解決問題的能力,屬于中檔題.20(1)(2)答案見解析(3)答案見解析【解析】(1)設
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 園區(qū)管理辦法教案小班
- 機場應急預案管理辦法
- 智能投顧技術演進-洞察及研究
- 建筑文明施工方案
- 發(fā)票管理辦法發(fā)票使用
- 變電站電氣安裝施工指導書
- 土壤腐殖質電化學特性表征技術及其環(huán)境效應研究
- 公益科技項目管理辦法
- 公園設施維修管理辦法
- 基于《營造學社匯刊》圖紙的3D建模技術分析
- 韓國語topik單詞-初級+中級
- 顧客滿意度調查表(模板)
- 礦山生產(chǎn)建設規(guī)模分類一覽表
- JJG 966-2010手持式激光測距儀
- FZ/T 01118-2012紡織品防污性能的檢測和評價易去污性
- 2020年廣州市初三英語中考模擬考試+答案
- 2023年心肺復蘇(CPR)指南解讀
- 電廠新員工安規(guī)考試
- 西方管理學名著提要
- 閥門設計計算書(帶公式)
- 新蘇科版七年級下冊初中數(shù)學全冊教案
評論
0/150
提交評論