




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、高中數(shù)學(xué)第八章-圓錐曲線方程考試內(nèi)容:數(shù)學(xué)探索©橢圓及其標(biāo)準(zhǔn)方程橢圓的簡單幾何性質(zhì)橢圓的參數(shù)方程數(shù)學(xué)探索©雙曲線及其標(biāo)準(zhǔn)方程雙曲線的簡單幾何性質(zhì)數(shù)學(xué)探索©拋物線及其標(biāo)準(zhǔn)方程拋物線的簡單幾何性質(zhì)數(shù)學(xué)探索©考試要求:數(shù)學(xué)探索©(1)掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡單幾何性質(zhì),了解橢圓的參數(shù)方程數(shù)學(xué)探索©(2)掌握雙曲線的定義、標(biāo)準(zhǔn)方程和雙曲線的簡單幾何性質(zhì)數(shù)學(xué)探索©(3)掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡單幾何性質(zhì)數(shù)學(xué)探索©(4)了解圓錐曲線的初步應(yīng)用 §08. 圓錐曲線方程 知識要點一、橢圓方程.1.
2、 橢圓方程的第一定義:橢圓的標(biāo)準(zhǔn)方程:i. 中心在原點,焦點在x軸上:. ii. 中心在原點,焦點在軸上:. 一般方程:.橢圓的標(biāo)準(zhǔn)參數(shù)方程:的參數(shù)方程為(一象限應(yīng)是屬于).頂點:或.軸:對稱軸:x軸,軸;長軸長,短軸長.焦點:或.焦距:.準(zhǔn)線:或.離心率:.焦點半徑:i. 設(shè)為橢圓上的一點,為左、右焦點,則由橢圓方程的第二定義可以推出.ii.設(shè)為橢圓上的一點,為上、下焦點,則由橢圓方程的第二定義可以推出.由橢圓第二定義可知:歸結(jié)起來為“左加右減”.注意:橢圓參數(shù)方程的推導(dǎo):得方程的軌跡為橢圓. 通徑:垂直于x軸且過焦點的弦叫做通經(jīng).坐標(biāo):和共離心率的橢圓系的方程:橢圓的離心率是,方程是大于0
3、的參數(shù),的離心率也是 我們稱此方程為共離心率的橢圓系方程.若P是橢圓:上的點.為焦點,若,則的面積為(用余弦定理與可得). 若是雙曲線,則面積為.二、雙曲線方程.1. 雙曲線的第一定義:雙曲線標(biāo)準(zhǔn)方程:. 一般方程:.i. 焦點在x軸上: 頂點: 焦點: 準(zhǔn)線方程 漸近線方程:或ii. 焦點在軸上:頂點:. 焦點:. 準(zhǔn)線方程:. 漸近線方程:或,參數(shù)方程:或 .軸為對稱軸,實軸長為2a, 虛軸長為2b,焦距2c. 離心率. 準(zhǔn)線距(兩準(zhǔn)線的距離);通徑. 參數(shù)關(guān)系. 焦點半徑公式:對于雙曲線方程(分別為雙曲線的左、右焦點或分別為雙曲線的上下焦點) “長加短減”原則: 構(gòu)成滿足 (與橢圓焦半徑
4、不同,橢圓焦半徑要帶符號計算,而雙曲線不帶符號) 等軸雙曲線:雙曲線稱為等軸雙曲線,其漸近線方程為,離心率.共軛雙曲線:以已知雙曲線的虛軸為實軸,實軸為虛軸的雙曲線,叫做已知雙曲線的共軛雙曲線.與互為共軛雙曲線,它們具有共同的漸近線:.共漸近線的雙曲線系方程:的漸近線方程為如果雙曲線的漸近線為時,它的雙曲線方程可設(shè)為.例如:若雙曲線一條漸近線為且過,求雙曲線的方程?解:令雙曲線的方程為:,代入得.直線與雙曲線的位置關(guān)系:區(qū)域:無切線,2條與漸近線平行的直線,合計2條;區(qū)域:即定點在雙曲線上,1條切線,2條與漸近線平行的直線,合計3條;區(qū)域:2條切線,2條與漸近線平行的直線,合計4條;區(qū)域:即定
5、點在漸近線上且非原點,1條切線,1條與漸近線平行的直線,合計2條;區(qū)域:即過原點,無切線,無與漸近線平行的直線.小結(jié):過定點作直線與雙曲線有且僅有一個交點,可以作出的直線數(shù)目可能有0、2、3、4條.(2)若直線與雙曲線一支有交點,交點為二個時,求確定直線的斜率可用代入法與漸近線求交和兩根之和與兩根之積同號.若P在雙曲線,則常用結(jié)論1:P到焦點的距離為m = n,則P到兩準(zhǔn)線的距離比為mn. 簡證: = .常用結(jié)論2:從雙曲線一個焦點到另一條漸近線的距離等于b.三、拋物線方程.3. 設(shè),拋物線的標(biāo)準(zhǔn)方程、類型及其幾何性質(zhì):圖形焦點準(zhǔn)線范圍對稱軸軸軸頂點 (0,0)離心率焦點注:頂點.則焦點半徑;
6、則焦點半徑為.通徑為2p,這是過焦點的所有弦中最短的.(或)的參數(shù)方程為(或)(為參數(shù)).四、圓錐曲線的統(tǒng)一定義.4. 圓錐曲線的統(tǒng)一定義:平面內(nèi)到定點F和定直線的距離之比為常數(shù)的點的軌跡.當(dāng)時,軌跡為橢圓;當(dāng)時,軌跡為拋物線;當(dāng)時,軌跡為雙曲線;當(dāng)時,軌跡為圓(,當(dāng)時).5. 圓錐曲線方程具有對稱性. 例如:橢圓的標(biāo)準(zhǔn)方程對原點的一條直線與雙曲線的交點是關(guān)于原點對稱的.因為具有對稱性,所以欲證AB=CD, 即證AD與BC的中點重合即可.注:橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì)橢圓雙曲線拋物線定義1到兩定點F1,F2的距離之和為定值2a(2a>|F1F2|)的點的軌跡1到兩定點F1,
7、F2的距離之差的絕對值為定值2a(0<2a<|F1F2|)的點的軌跡2與定點和直線的距離之比為定值e的點的軌跡.(0<e<1)2與定點和直線的距離之比為定值e的點的軌跡.(e>1)與定點和直線的距離相等的點的軌跡.圖形方程標(biāo)準(zhǔn)方程(>0)(a>0,b>0)y2=2px參數(shù)方程(t為參數(shù))范圍a£x£a,b£y£b|x| ³ a,yÎRx³0中心原點O(0,0)原點O(0,0)頂點(a,0), (a,0), (0,b) , (0,b)(a,0), (a,0)(0,0)對稱軸x軸,y軸;長軸長2a,短軸長2bx軸,y軸;實軸長2a, 虛軸長2b.x軸焦點F1(c,0), F2(c,0)F1(c,0), F2(c,0)焦距2c (c=)2c (c=)離心率e=1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二年級下語文數(shù)學(xué)試卷
- 高難度劇本殺數(shù)學(xué)試卷
- 肛腸科中醫(yī)課件
- 光山縣招教試題數(shù)學(xué)試卷
- 肉雞生物安全課件
- 飛線充電培訓(xùn)課件
- 2024年10月遼寧2024撫順縣農(nóng)村信用合作聯(lián)社校園招考筆試歷年參考題庫附帶答案詳解
- 超聲骨密度培訓(xùn)課件
- 四川南充臨江建設(shè)發(fā)展集團(tuán)有限責(zé)任公司員工招聘考試真題2024
- 2024年眉山職業(yè)技術(shù)學(xué)院招聘筆試真題
- 2025年小學(xué)五年級數(shù)學(xué)期末沖刺卷:數(shù)學(xué)基礎(chǔ)知識鞏固
- 電子煙工藝原理及生產(chǎn)流程培訓(xùn)
- DZ/T 0261-2014滑坡崩塌泥石流災(zāi)害調(diào)查規(guī)范(1∶50 000)
- T/CQAP 3014-2024研究者發(fā)起的抗腫瘤體細(xì)胞臨床研究細(xì)胞制劑制備和質(zhì)量控制規(guī)范
- 初中體育教學(xué)中德育教育的現(xiàn)狀、問題與突破路徑探究
- 立訊精密經(jīng)營管理體系
- 2025屆山東省濟(jì)南天橋區(qū)四校聯(lián)考物理八下期末經(jīng)典試題含解析
- 2025年餐飲服務(wù)合同范本
- 基層供銷社管理制度
- 軟式內(nèi)鏡清洗消毒技術(shù)規(guī)范2025
- 農(nóng)業(yè)供應(yīng)鏈管理考試試題及答案
評論
0/150
提交評論