TDNN時間延遲神經(jīng)網(wǎng)絡(luò)_第1頁
TDNN時間延遲神經(jīng)網(wǎng)絡(luò)_第2頁
TDNN時間延遲神經(jīng)網(wǎng)絡(luò)_第3頁
TDNN時間延遲神經(jīng)網(wǎng)絡(luò)_第4頁
TDNN時間延遲神經(jīng)網(wǎng)絡(luò)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、1會計學(xué)TDNN時間延遲神經(jīng)網(wǎng)絡(luò)時間延遲神經(jīng)網(wǎng)絡(luò)Introduction In this paper, the author presents a novel concept for simultaneous shape estimation and motion analysis based on a TDNN(time-delay neural network) architecture with adaptable spatio-temporal receptive fields.Time delay network structure with adaptable spatio-tem

2、poral receptive fieldstThe input image sequence is of the dimension Sx(1) Sy(1) St(1)Time delay network structure with adaptable spatio-temporal receptive fieldsttBxytrsmnpBranchBranchsijttBxytBxytsijtvsijqkktkTime delay network structure with adaptable spatio-temporal receptive fieldsError function

3、 A k = c (current class c), A1?k = 0 k cExperiments The size of a single image is Sx(1) = 32 by Sy(1) = 16 pixels, one sequence consists of St(1) = 8 such images. There are two shape classes, and five speeds V0 = -4, -2, 0, 2, 4. The training sets consist of 5000 examples, 500 of each class.The netw

4、ork parameters are as follows:And the error rate on the test set is 1.1%.ExperimentsAn Adaptable Time-Delay Neural-Network Algorithm for Image Sequence AnalysisLiu Xiao 2014.8.18IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999Introduction In this paper the author present an algorithm based on a time-delay

5、 neural network with spatio-temporal receptive fields and adaptable time delays(ATDNN) for image sequence analysis. The aim is to classify objects on temporal sequences of grayscale images and to estimate their motion behavior.The ATDNN algorithmThe ATDNN algorithmThe training algorithm As the adapt

6、ation procedure for and is based on a gradient descent method, next step is to define a network output k(, ) for real-valued and , which is achieved by bilinear interpolation. Error functionApplications A. Simple Synthetic Image Sequence The network parameters are Rx = Ry = 7, Rt = 5, NRF = 2, Dx =

7、Dy = 4, Rt = Rh = 2.ApplicationsApplications In the test, The error rate on the test set of 1.1% for above experiments. In this application, the error is 1.2% for training run 1, 1.1% for run 2, and 1.2% for run 3. Applications B. Recognition of Pedestrians In this section the purpose is to examine

8、a rather complex application: the recognition of pedestrians on image sequences based on the characteristic criss-cross motion of their legs. The aim is to distinguish between pedestrian and nonpedestrian patterns.ApplicationsApplications Rx = Ry = 9, Rt = 2, NRF = 2, Rh = 2, Dx = Dy = 5.Application

9、sIntroduction In this paper, the author presents a novel concept for simultaneous shape estimation and motion analysis based on a TDNN(time-delay neural network) architecture with adaptable spatio-temporal receptive fields.tBxytTime delay network structure with adaptable spatio-temporal receptive fieldsError function A k = c

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論